Non Commutative Fourier Transform and Partial Differential Equation on the Motion Group

*Kahar El-Hussein **Badahi Ould Mohamed
*Department of Mathematics, Faculty of Science, Al Furat University, Dear El Zore, Syria \mathcal{E}
Department of Mathematics, Faculty of Science and Arts Al Qurayat, Al-Jouf University, Kingdom of Saudi Arabia, E-mail : kumath@ju.edu.sa, kumath@hotmail.com
* Badahi Ould Mohamed
Department of Mathematics, Faculty of Arts and Science at Al Qurayat, Al Jouf University, Kingdom of Saudi Arabia, badahi1977@yahoo.fr

May 23, 2014

Abstract

Let V be the n - dimensional real vectoriel group, K a connected compact Lie group and $G=V \rtimes_{\rho} K$ be the motion group, which is the semi-direct product of the group V and K. Let \mathcal{U} be the enveloping algebra of G, which is the algebra of all the invariant partial differential equations on G. In this paper, we will define the Fourier transform on G and we demonsrate the Plancherel theorem. Besides we give necessary and sufficient condition for the existence of a fundemantal solution for any invariant partial differential equations P on G.

Keywords: Key words : Motion Group, Semidirect Product of Two Lie Groups, Fourier Transform, Plancherel Theorem, Invariant Partial Differential Operators.

AMS 2000 Subject Classification: $43 A 30 \& 35 D 05$

1 Introduction and Results.

1. Let V be the n - dimensional real vectoriel group, K a compact Lie group and $\rho: K \rightarrow G L(V)$ a continuous linear representation from K in V . Let $G=V \rtimes_{\rho} K$ be the motion group, which is the semi-direct product of the group V and K. We supply V by K-invariant scalar product which is denoted by \langle,$\rangle . Let \mathcal{S}(V)$ be the Schwartz space of V. We denote by $\mathcal{S}(G)$ the complemented of the space $\mathcal{S}(V) \otimes C^{\infty}(K)$ tensor product of $\mathcal{S}(V)$ and $C^{\infty}(K)$. The topology of the space $\mathcal{S}(G)$ which is defined by the family of semi-normas

$$
\begin{equation*}
\partial_{\alpha, \beta}^{l}(f)=\sup _{|\alpha \leq p|,} \sup _{(v, y) \in V \times K}\left(1+|v|^{2}\right)^{\beta}\left\|Q_{v}^{\alpha} D^{l} f(v, y)\right\|_{2} \tag{1}
\end{equation*}
$$

turns $\mathcal{S}(G)$ a Frechet space wich can be called the Schwartz space of G, where | | signifies the norm associated to (।), see [3].

Definition 1.1. Let P be an invariant differential operator on a connected Lie group H. by definition P is said to be semi-globally solvable if there exist a distribution T on H such that $P T=\delta_{H}$, where δ_{H} ias the Dirac measure at the identity element of H.

Definition 1.2. Let P be an invariant differential operator on a connected Lie group H by definition P is said to be globally solvable if for any function $g \in C^{\infty}(H)$, there exist a function $f \in C^{\infty}(H)$ such that

$$
\begin{equation*}
P f=g \tag{2}
\end{equation*}
$$

For all the following notations and results, see [2]
2. Let \underline{k} be the Lie algebra of K and $\left(X_{1}, X_{2}, \ldots . ., X_{m}\right)$ a basis of \underline{k}, such that the both operators

$$
\begin{gather*}
\Delta=\sum_{i=1}^{m} X_{i}^{2} \tag{3}\\
D_{q}=\sum_{0 \leq l \leq q}\left(-\sum_{i=1}^{m} X_{i}^{2}\right)^{l} \tag{4}
\end{gather*}
$$

are left and right invariant (bi-invariant) on K, this basis exist see $[2, p .564$). For $l \in \mathbb{N}$, let $D^{l}=(1-\Delta)^{l}$, then the family of semi-norms $\left\{\gamma_{l}, l \in \mathbb{N}\right\}$ such that

$$
\begin{equation*}
\gamma_{l}(f)=\left(\int_{K}\left|D^{l} f(y)\right|^{2} d y\right)^{\frac{1}{2}}, \quad f \in C^{\infty}(K) \tag{5}
\end{equation*}
$$

define on $C^{\infty}(K)$ the same topology of the Frechet topology defined by the semi-norms $\left\|X^{\alpha} f\right\|_{2}$ defined as

$$
\begin{equation*}
\left\|X^{\alpha} f\right\|_{2}=\left(\int_{K}\left|X^{\alpha} f(y)\right|^{2} d y\right)^{\frac{1}{2}}, \quad f \in C^{\infty}(K) \tag{6}
\end{equation*}
$$

where $\alpha=\left(\alpha_{1}, \ldots ., \alpha_{m}\right) \in \mathbb{N}^{m}$, see $[2, p .565]$
3. Let \widehat{K} be the set of all irreducible unitary representations of K. If $\gamma \in \widehat{K}$, we denote by E_{γ} the space of representaion γ and d_{γ} its demension then we get

$$
\begin{equation*}
1 \leq\left\langle D_{q} \operatorname{tr} \gamma(r), \operatorname{tr}(r)\right\rangle=d_{q}(\gamma) \tag{7}
\end{equation*}
$$

If $u(\eta)$ is a polynomial on \mathbb{R}^{n} valued in E_{γ}, we denote by $\widetilde{u}(\eta)$ the matrix defined by
where

$$
\begin{equation*}
\left[\widetilde{u}_{i j}(\eta)\right] \tag{8}
\end{equation*}
$$

$\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots ., \alpha_{m}\right), 1 \leq \alpha_{j} \leq n, \eta^{\alpha}=\eta_{\alpha_{1}} \ldots \ldots \eta_{\alpha_{m}}$, and $\left(\eta_{1}, \eta_{2}, \ldots ., \eta_{n}\right)$ is basis of \mathbb{R}^{n}. In this case we get.

$$
\begin{equation*}
\|\widetilde{u}(\eta)\|^{2}=\sum_{|\alpha| \leq m}\left\|u(\eta)^{(\alpha)}\right\|^{2} \tag{10}
\end{equation*}
$$

Definition 1.3. The Fourier transform of a function $f \in C^{\infty}(K)$ is defined as

$$
\begin{equation*}
T f(\gamma)=\int_{K} f(x) \gamma\left(x^{-1}\right) d x \tag{11}
\end{equation*}
$$

where T denotes the Fourier transform on K
Theorem (A. Cerezo) 1.1. Let $f \in C^{\infty}(K)$, then we have the inversion of the Fourier transform

$$
\begin{equation*}
f(x)=\sum_{\gamma \in \widehat{K}} d \gamma \operatorname{tr}[T f(\gamma) \gamma(x)] \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
f(I)=\sum_{\gamma \in S O(3)} d \gamma \operatorname{tr}[T f(\gamma)] \tag{13}
\end{equation*}
$$

and the Plancherel formula

$$
\begin{equation*}
\|f(x)\|_{2}^{2}=\int|f(x)|^{2} d x=\sum_{\gamma \in \widehat{K}} d_{\gamma}\|T f(\gamma)\|_{H . S}^{2} \tag{14}
\end{equation*}
$$

where I is the identity element of K, where $\|T f(\gamma)\|_{H . S}^{2}$ is the norm of the Hilbert-Schmidt of the operator $T f(\gamma)$

2 Fourier Transform on the Motion Group

Definition 2.1. For every function f belongs to $L^{1}(V \times K)$, one can define the Fourier transform of f by the following manner

$$
\begin{equation*}
T \mathcal{F} f(\xi, \gamma)=\int_{V} \int_{K} f(v, x) e^{-i\langle\xi, v\rangle} \gamma\left(x^{-1}\right) d v d x \tag{15}
\end{equation*}
$$

for all $\xi \in V \simeq V^{*}$ and for all $\gamma \in \widehat{K}$, where \mathcal{F} is the partial Fourier transform on the real vector Lie groupV

Then we get the the Fourier inversion

$$
\begin{align*}
f(v, x) & =\sum_{\gamma \in \widehat{K}} d_{\gamma} \int_{V} \operatorname{tr}\left[T \mathcal{F} f(\xi, \gamma) e^{i\langle\xi, v\rangle} \gamma\left(x^{-1}\right)\right] d \xi \tag{16}\\
& =\int_{V} \sum_{\gamma \in \widehat{K}} d_{\gamma} \operatorname{tr}\left[T \mathcal{F} f(\xi, \gamma) e^{i\langle\xi, v\rangle} \gamma\left(x^{-1}\right)\right] d \xi \tag{17}\\
f(0,1) & =\sum_{\gamma \in \widehat{K}} d_{\gamma} \int_{V} \operatorname{tr}[T \mathcal{F} f(\xi, \gamma)] d \xi \tag{18}
\end{align*}
$$

When $K=S O(n)$, our result is
Theorem 2.1. (Plancheral's formula) For any $f \in L^{1}(G) \cap L^{2}(G)$, we get

$$
\begin{equation*}
f * \stackrel{\vee}{f}(0,1)=\int_{G}|f(v, x)|^{2} d v d x=\sum_{\gamma \in \widehat{K}} d_{\gamma} \int_{V}\|T \mathcal{F} f(\xi, \gamma)\|_{2}^{2} d \xi \tag{19}
\end{equation*}
$$

where $\stackrel{\vee}{f}$ is the function defined by

$$
\begin{equation*}
\stackrel{\vee}{f}(v, x)=\overline{f(v, x)^{-1}} \tag{20}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
& f * f(0,1) \\
= & \sum_{\gamma \in \widehat{K}} d_{\gamma} \operatorname{tr} \int_{V} T \mathcal{F}(f * f)(\xi, \gamma) d \xi \\
= & \left.\sum_{\gamma \in \widehat{K}} d_{\gamma} \int_{V} \int_{V} \int_{K} \operatorname{tr}\left[\begin{array}{l}
V
\end{array} f(v, x)\right) e^{-i\langle\xi, v\rangle} \gamma\left(x^{-1}\right)\right] d v d x d \xi \\
= & \sum_{\gamma \in \widehat{K}} d_{\gamma} \int_{V} \int_{V} \int_{K} \operatorname{tr}\left[\int_{V} \int_{K} f\left((u, y)^{-1}(v, x)\right) f(u, y) e^{-i\langle\xi, v\rangle} \gamma\left(x^{-1}\right)\right] d v d x d u d y d \xi \\
= & \sum_{\gamma \in \widehat{K}} d_{\gamma} \int_{V} \int_{V} \int_{K} \operatorname{tr}\left[\int_{V} \int_{K} f((u, y)(v, x)) \overline{f(u, y)^{-1}} e^{-i\langle\xi, v\rangle} \gamma\left(x^{-1}\right)\right] d v d x d u d y d \xi \\
= & \sum_{\gamma \in \widehat{K}} d_{\gamma} \int_{V} \int_{V} \int_{K} \operatorname{tr}\left[\int_{V} \int_{K} f(u+y v, y x) \overline{f(u, y)} e^{-i\langle\xi, v\rangle} \gamma\left(x^{-1}\right)\right] d v d x d u d y d \xi
\end{aligned}
$$

Chinging variables $u+y v=w, y x=z$, we have

$$
\begin{aligned}
& f * f(0,1) \\
= & \sum_{\gamma \in \widehat{K}} d_{\gamma} \int_{V} \int_{V} \int_{K} \operatorname{tr}\left[\int_{V} \int_{K} f(w, z) \overline{f(u, y)} e^{-i\left\langle\xi, y^{-1}(w-u)\right\rangle} \gamma\left(z^{-1} y\right)\right] d w d z d u d y d \xi \\
= & \sum_{\gamma \in \widehat{K}} d_{\gamma} \int_{V} \int_{V} \int_{K} \operatorname{tr}\left[\int_{V} \int_{K} f(w, z) \overline{f(u, y)} e^{-i\langle y \xi,(w-u)\rangle} \gamma\left(z^{-1}\right) \gamma(y)\right] d w d z d \xi
\end{aligned}
$$

Using the fact that the lebesgue $d \xi$ is invariant by the group rotation $S O(n)$, we get

$$
\begin{aligned}
& f * f(0,1) \\
= & \sum_{\gamma \in \widehat{K}} d_{\gamma} \int_{V} \int_{V} \int_{K} \operatorname{tr}\left[\int_{V} \int_{K} f(w, z) \overline{f(u, y)} e^{-i\langle y \xi,(w-u)\rangle} \gamma\left(z^{-1}\right) \gamma(y)\right] d w d z d \xi \\
= & \sum_{\gamma \in \widehat{K}} d_{\gamma} \int_{V} \int_{V} \int_{K} \operatorname{tr}\left[\int_{V} \int_{K} f(w, z) \overline{f(u, y)} e^{-i\langle\xi,(w-u)\rangle} \gamma\left(z^{-1}\right) \gamma\left(y^{-1}\right)^{-1}\right] d w d z d u d y d \xi \\
= & \sum_{\gamma \in \widehat{K}} d_{\gamma} \int_{V} \int_{V} \int_{K} \operatorname{tr}\left[\int_{V} \int_{K} f(w, z) e^{-i\langle\xi, w\rangle} \overline{f(u, y)} e^{-i\langle\xi,-u\rangle} \gamma\left(z^{-1}\right) \gamma^{*}\left(y^{-1}\right)\right] d w d z d u d y d \xi \\
= & \sum_{\gamma \in \widehat{K}} d_{\gamma} \int_{V} \int_{V} \int_{K} \int_{V} \int_{K} \operatorname{tr}\left[f(w, z) e^{-i\langle\xi, w\rangle} \gamma\left(z^{-1}\right) \overline{f(u, y) e^{-i\langle\xi, u\rangle}} \gamma^{*}\left(y^{-1}\right)\right] d w d z d u d y d \xi \\
= & \sum_{\gamma \in \widehat{K}} d_{\gamma} \int_{V} \operatorname{tr}\left[T \mathcal{F} f(\xi, \gamma) \overline{\left.T \mathcal{F} f\left(\xi, \gamma^{*}\right)\right] d \xi=\sum_{\gamma \in \widehat{K}} d_{\gamma} \int_{V}\|T \mathcal{F} f(\xi, \gamma)\|_{H . S}^{2} d \xi}\right.
\end{aligned}
$$

Hence our theorem
Let $L=V \times K \times K$ be the group with law:

$$
\begin{equation*}
(v, x, y)(w, s, t)=(v+\rho(y) w, x s, y t) \tag{21}
\end{equation*}
$$

Let $\mathcal{D}(V \times K \times K), \mathcal{S}(V \times K \times K)$, and $C^{\infty}(V \times K \times K)$ be C^{∞} with compact support, the Schwartz space and the space of C^{∞} - functions of the group L.

Definition 2.2.. For any $f \in \mathcal{S}(G)$, we can define a function $\tilde{f} \in$ $\mathcal{S}(V \times K \times K)$ as follows

$$
\begin{equation*}
\tilde{f}(v, x, y)=f(\rho(x v), x y)=f(x v \cdot x y) \tag{22}
\end{equation*}
$$

for all $\xi \in V \simeq V^{*}$ and for all $\gamma \in \widehat{K}$, where xv signifies $\rho(x v)$. Note here that the function \widetilde{f} is invariant in the following sense

$$
\begin{equation*}
\widetilde{f}\left(t v, x t^{-1}, t y\right)=\widetilde{f}(v, x, y) \tag{23}
\end{equation*}
$$

We denote by $\mathcal{D}_{K}(V \times K \times K), \mathcal{S}_{K}(V \times K \times K)$, and $C_{K}^{\infty}(V \times K \times K)$ the spaces C^{∞} with compact, the Schwartz space and the space of C^{∞} - functions of the group L, which are invariant in sense (21)

Definition 2.3.. for any two function $f \in \mathcal{S}(G)$ and $F \in \mathcal{S}_{K}(V \times K \times K)$, we can define a convolution product of f and F on G as

$$
\begin{align*}
f * F(v, x, y) & =\int_{G} F\left((w, z)^{-1}(v, x, y) f(w, z) d w d z\right. \\
& =\int_{G} F\left(z^{-1}(v-w), x, z^{-1} y\right) f(w, z) d w d z \tag{24}
\end{align*}
$$

This leads to obtain
Lemma 2.1. If F is invarant in sense (21), then we get

$$
\begin{equation*}
f * F(v, x, y)=f *_{c} F(v, x, y) \tag{25}
\end{equation*}
$$

for every $f \in C^{\infty}(V \times K),(v, x, y) \in L$, where $*$ signifies the convolution product on $G=V \times\left\{I_{K}\right\} \times K$ with respect the variables (v, y) and $*_{c}$ signifies the convolution product on the subgroup $B=V \times K \times\left\{I_{K}\right\}$ of L, which is the direct product of V and K with respect the variables (v, x)

Proof: Let $f \in \mathcal{S}(G)$ and $F \in \mathcal{S}_{K}(V \times K \times K)$, then we have

$$
\begin{align*}
f * F(v, x, y) & =\int_{G} F\left((w, z)^{-1}(v, x, y) f(w, z) d w d z\right. \\
& =\int_{G} F\left(z^{-1}(v-w), x, z^{-1} y\right) f(w, z) d w d z \\
& =\int_{G} F\left((v-w), x z^{-1}, y\right) f(w, z) d w d z \\
& =F *_{c} f(v, x, y) \tag{26}
\end{align*}
$$

So the lemma is proved.
Definition 2.4. If $f \in \mathcal{S}(G)$, one can define the Fourier transform of its invariant \widetilde{f} as

$$
\begin{equation*}
T \mathcal{F} \tilde{f}(\xi, \gamma, 1)=\int_{V} \int_{K} \sum_{\delta \in \widehat{K}} d_{\delta} \operatorname{tr}\left[\int_{K} T \mathcal{F} \tilde{f}(v, x, y) \delta\left(y^{-1}\right) d y\right] \gamma\left(x^{-1}\right) d x e^{-i\langle\xi, v\rangle} d v \tag{27}
\end{equation*}
$$

where \tilde{f} is the function defined by

$$
\begin{equation*}
\widetilde{f}(v, x, y)=f(x v, x y) \tag{28}
\end{equation*}
$$

Theorem 2.2. For any two functions g and f belong to $C^{\infty}(V \times K)=$ $C^{\infty}(G)$, then we have

$$
\begin{equation*}
T \mathcal{F}(g * \widetilde{f})(\xi, \gamma, 1)=T \mathcal{F}\left(\widetilde{f} *_{c} g\right)(\xi, \gamma, 1)=\mathcal{F}(\widetilde{f})(\xi, \gamma, 1) T \mathcal{F}(g)(\xi, \gamma) \tag{29}
\end{equation*}
$$

Proof: By lemma 2.1. we have if f and g two functions from $\mathcal{S}(G)$

$$
\begin{align*}
& T \mathcal{F}(g * \widetilde{f})(\xi, \gamma, 1) \\
= & \int_{V} \int_{K} \sum_{\delta \in \widehat{K}} d_{\delta} \operatorname{tr}[(g * \widetilde{f})(v, x, \delta)] \gamma\left(x^{-1}\right) d x e^{-i\langle\xi, v\rangle} d v \\
= & \int_{V} \int_{K} \sum_{\delta \in \widehat{K}} d_{\delta} \operatorname{tr}\left[\int_{K}((g * \widetilde{f})(v, x, y)) \delta\left(y^{-1}\right) d y\right] \gamma\left(x^{-1}\right) d x e^{-i\langle\xi, v\rangle} d v \\
= & \int_{V} \int_{K} \sum_{\delta \in \widehat{K}} d_{\delta} \operatorname{tr}\left[\int_{K}\left(\left(\tilde{f} *_{c} g\right)(v, x, y)\right) \delta\left(y^{-1}\right) d y\right] \gamma\left(x^{-1}\right) d x e^{-i\langle\xi, v\rangle} d v(3 \tag{30}
\end{align*}
$$

Changing variables $v-u=w, x t^{-1}=z$, this implies

$$
\begin{align*}
& T \mathcal{F}(g * \widetilde{f})(\xi, \gamma, 1) \\
= & \left.\int_{V} \int_{K} \int_{V} \int_{K} \widetilde{f}\left(v-u, x t^{-1}, 1\right)\right] g(u, t) d u d t \gamma\left(x^{-1}\right) d x e^{-i\langle\xi, v\rangle} d v \\
= & \left.\int_{V} \int_{K} \int_{V} \int_{K} \widetilde{f}(w, z, 1)\right] g(u, t) \gamma\left(t^{-1} z^{-1}\right) d x e^{-i\langle\xi, w+u\rangle} d u d t d w d z v d x \\
= & \left.\int_{V} \int_{K} \int_{V} \int_{K} \tilde{f}(w, z, 1)\right] g(u, t) \gamma\left(z^{-1}\right) \gamma\left(t^{-1}\right) d z d t e^{-i\langle\xi, w\rangle} e^{-i\langle\xi, u\rangle} d u d w \\
= & \left.\int_{V} \int_{K} \int_{V} \int_{K} \tilde{f}(z w, z)\right] g(u, t) \gamma\left(z^{-1}\right) \gamma\left(t^{-1}\right) d z d t e^{-i\langle\xi, w\rangle} e^{-i\langle\xi, u\rangle} d u d \gamma(31) \\
= & T \mathcal{F} \widetilde{f}(\xi, \gamma, 1) T \mathcal{F} g(\xi, \gamma) \tag{32}
\end{align*}
$$

Theorem 2.3. (Plancheral's formula) For any $f \in L^{1}(G) \cap L^{2}(G)$, we get

$$
\begin{equation*}
f * \stackrel{\widetilde{v}}{ }(0,1)=\int_{G}|f(v, x)|^{2} d v d x=\sum_{\gamma \in \widehat{K}} d_{\gamma} \int_{V}\|T \mathcal{F} f(\xi, \gamma)\|_{2}^{2} d \xi \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
\stackrel{\widetilde{v}}{f}(v, x, y)=\overline{f\left((x v, x y)^{-1}\right)} \tag{34}
\end{equation*}
$$

The proof of this theorem results immediatly from 2.2

3 Fourier Transform and Differential Operators on the Motion Groups

3. We denote by $L^{1}(G)$ the Banach algebra that consists of all complex valued functions on the group G, which are integrable with respect to the Haar measure of G and multiplication is defined by convolution on G, and we denote by $L^{2}(G)$ the Hilbert space of G. So we have for any $f \in L^{1}(G)$ and $\phi \in L^{1}(G)$

$$
\begin{equation*}
\phi * f(v, x)=\int_{G} f\left((w, y)^{-1}(v, x)\right) \phi(w, y) d w d y \tag{35}
\end{equation*}
$$

where $d w d y$ is the Haar measure on G, and $*$ denotes the convolution product on G. Let \mathcal{U} be the complexified universal enveloping algebra of the real Lie algebra of G; which is canonically isomorphic onto the algebra of all distributions on G supported by $\left\{I_{G}\right\}$, where $\left\{I_{G}\right\}$ is the identity element of G. For any $u \in \mathcal{U}$ one can define an left invariant differential operator P on G as follows:

$$
\begin{equation*}
P_{u} f(X)=u * f(v, x)=\int_{G} f\left((w, y)^{-1}(v, x)\right) u(w, y) d w d y \tag{36}
\end{equation*}
$$

for any $f \in C^{\infty}(G)$. The mapping $u \rightarrow P_{u}$ is an algebra isomorphism of \mathcal{U} onto the algebra of all invariant differential operators on G.
where $*_{c}$ means the convolution product on the group A, and $d w d y$ is the Haare measure on A. We denote by \mathcal{U}_{B} the complexified universal enveloping
algebra of the real Lie algebra of B, which is canonically isomorphic onto the algebra of all distributions on B supported by the $\left\{I_{B}\right\}$, where $\left\{I_{B}\right\}$ is the identity element of A. For any $u \in \mathcal{U}$ one can define a differential operator with constant coefficients Q on B as

$$
\begin{equation*}
f *_{c} Q_{u}(v, x)=f *_{c} u(v, x)=\int_{B} f\left(v-w, x y^{-1}\right) u(w, y) d w d y \tag{37}
\end{equation*}
$$

for any $f \in C^{\infty}(A)$, where $*_{c}$ means the convolution product on the group B.The mapping $u \rightarrow Q_{u}$ is an algebra isomorphism of \mathcal{U}_{B} onto the algebra of all invariant differential operators on B. For more details see $[4,11]$.

Theorem 3.1. Let P be a right invariant differential on the motion group G, then P has a fundamental solution if and only if there is a constant C and a number $q \in N$, such that

$$
\begin{equation*}
\operatorname{det} T \mathcal{F} u(0, \gamma) \neq 0 \text {, and }\left\|\frac{{ }^{c o} T \mathcal{F} u(0, \gamma)}{\operatorname{det} T \mathcal{F} u(0, \gamma)}\right\| \leq d_{\gamma}(q) \tag{38}
\end{equation*}
$$

Proof: Let u be the distribution associted to the right invariant differential operator P. Let $\operatorname{End}\left(E_{\gamma}\right)$ be the space of all enomorphisms of E_{γ} and let P_{ζ} be the polynomial valued in $\operatorname{End}\left(E_{\gamma}\right)$, defined by

$$
\begin{equation*}
(\zeta, \gamma) \mapsto T \mathcal{F}(\stackrel{\vee}{u})((\xi, \gamma)+(\zeta, \gamma))=T \mathcal{F}(\stackrel{\vee}{u})(\xi+\zeta, \gamma) \tag{39}
\end{equation*}
$$

For any $f \in \mathcal{D}(G)$, we put

$$
\begin{aligned}
& \langle S, f\rangle \\
= & \left.\int_{\mathbb{V}} \int_{\Omega} \sum_{\gamma \in \widehat{K}} d_{\gamma} \operatorname{tr}\left[\frac{{ }^{c o} T \mathcal{F}\left({ }^{\vee}\right)(\xi+\zeta, \gamma)}{\operatorname{det} T \mathcal{F}(\stackrel{\vee}{\vee})(\xi+\zeta, \gamma)} T \mathcal{F}(f)(\xi+\zeta, \gamma)\right] \Phi\left(P_{\zeta}, \xi\right) d \zeta d \pi d \omega d \xi d(x) 0 r\right)
\end{aligned}
$$

where Ω is a ball in \mathbb{C}^{n} with center $0, \Phi$ is Hormander,s function[12]. Then by [$2,573-579$], S defines distribution on G, so we can define a new distribution \widetilde{S} assiciated to S as

$$
\begin{aligned}
& \langle\widetilde{S}, f\rangle \\
= & \langle S, \widetilde{f}\rangle \\
= & \int_{\mathbb{V}} \int_{\Omega} \sum_{\gamma \in \widehat{K}} d_{\gamma} \operatorname{tr}\left[\frac{{ }^{c o} T \mathcal{F}(\stackrel{\vee}{u})(\xi+\zeta, \gamma)}{\operatorname{det} T \mathcal{F}(\stackrel{\vee}{\vee})(\xi+\zeta, \gamma)} T \mathcal{F}(\widetilde{f})(\xi+\zeta, \gamma, I)\right] \Phi\left(P_{\zeta}, \xi\right) d \zeta d \xi
\end{aligned}
$$

where $\Phi\left(P_{\zeta}, \xi\right)$ is the Hormander function [12]. Then we have by [2, $573-579$] and by Hormander construction, we have

$$
\begin{align*}
& \langle\widetilde{u * S}, f\rangle \\
= & \langle u * S, \widetilde{f}\rangle=\left\langle S, u^{\vee} * \widetilde{f}\right\rangle \\
= & \left.\int_{\mathbb{V}} \int_{\Omega} \sum_{\gamma \in \widehat{S O(3)}} d_{\gamma} \operatorname{tr}\left[\frac{{ }^{c o} T \mathcal{F}(\stackrel{\vee}{\vee})(\xi+\zeta, \gamma)}{\operatorname{det} T \mathcal{F}(\stackrel{\vee}{u})(\xi+\zeta, \gamma)} T \mathcal{F}(\stackrel{\vee}{\vee} * \widetilde{f})(\xi+\zeta, \gamma, I)\right)\right] \Phi\left(P_{\zeta}, \xi\right) d \zeta d \xi \\
= & \int_{\mathbb{V}} \int_{\Omega} \sum_{\gamma \in \widehat{K}} d_{\gamma} \operatorname{tr}\left[\frac{{ }^{c o} T \mathcal{F}(\stackrel{\vee}{u})(\xi+\zeta, \gamma)}{\operatorname{det} T \mathcal{F}(\stackrel{\vee}{u})(\xi+\zeta, \gamma)} T \mathcal{F}\left(\vee *_{c}^{\vee} \tilde{f}\right)(\xi+\zeta, \gamma, I)\right] \Phi\left(P_{\zeta}, \xi\right) d \zeta d \xi \\
= & \int_{\mathbb{V}} \int_{\Omega} \sum_{\gamma \in \widehat{K}} d_{\gamma} \operatorname{tr}\left[\frac{{ }^{c} T \mathcal{F}(u)(\xi+\zeta, \gamma) \mathcal{F}(\vee)(\xi+\zeta, \gamma)}{\operatorname{det} T \mathcal{F}(\stackrel{\vee}{\vee})(\xi+\zeta, \gamma)} T \mathcal{F}(\widetilde{f})(\xi+\zeta, \gamma, I)\right] \Phi\left(P_{\zeta}, \xi\right) d \zeta d \xi \\
= & \int_{\mathbb{V}} \int_{\Omega} \sum_{\gamma \in \widehat{K}} d_{\gamma} \operatorname{tr}[T \mathcal{F}(\widetilde{f})(\xi+\zeta, \gamma, I)] \Phi\left(P_{\zeta}, \xi\right) d \zeta d \xi \\
= & \int_{\mathbb{V}} \sum_{\gamma \in \widehat{K}} d_{\gamma} \operatorname{tr}[T \mathcal{F}(\widetilde{f})(\xi, \gamma, I)] d \xi=\widetilde{f}(0, I, I)=\left\langle\delta_{G}, \widetilde{f}\right\rangle \tag{41}
\end{align*}
$$

Consequently, we have

$$
\begin{equation*}
u * S(v, q)=\delta_{G}(v, q) \tag{42}
\end{equation*}
$$

Hence the proof of our theorem.

References

[1] Chirikjian, G. S., and A. Kyatkin, A., (2000), Engineering Applications in Non-commutative Harmonic Analysis, Johns Hopkins University, Baltimore, Maryland, CRC Press.
[2] A. Cerezo and F. Rouviere, "Solution elemetaire d'un operator differentielle lineare invariant agauch sur un group de Lie reel compact" Annales Scientiques de E.N.S. 4 serie, tome 2, n ${ }^{\circ} 4$, p 561-581, 1969.
[3] K. El- Hussein, "Eigendistributions for the Invariant Differential operators on the Affine Group". Int. Journal of Math. Analysis, Vol. 3, no. 9, 419-429, 2009.
[4] K. El- Hussein, "Fourier transform and invariant differential operators on the solvable Lie group G4", in Int. J. Contemp. Maths Sci. 5. No. 5-8, 403-417, 2010.
[5] K. El- Hussein, "On the left ideals of group algebra on the affine group", in Int. Math Forum, Int, Math. Forum 6, No. 1-4, 193-202, 2011.
[6] K. El- Hussein, "Non Commutative Fourier Transform on Some Lie Groups and Its Application to Harmonic Analysis", International Journal of Engineering Research \& Technology (IJERT), Vol. 2, Issue 10, 2429-2442, 2013.
[7] K. El- Hussein, "Abstract Harmonic Analysis and Ideals of Banach Algebra on 3-Step Nilpotent Lie Groups", International Journal of Engineering Research \& Technology IJERT, Vol. 2 Issue 11, November 2013. 1555-1569.
[8] K. El- Hussein, "Fourier Transform and Plancherel Formula for Galilean Group (Spacetime)", International Journal of Application or Innovation in Engineering \& Management, Volume 2, Issue 11, November 2013, 195-200.
[9] K. El- Hussein, "Fourier Transform and Plancherel Formula for the Lorentz Group", International Journal of Advanced Scientific and Technical Research, Issue 3 volume 6, Nov.-Dec. 2013, 181-199
[10] Harish-Chandra, "Plancherel formula for 2×2 real unimodular group", Proc. nat. Acad. Sci. U.S.A., vol. 38, pp. 337-342, 1952.
[11] S. Helgason, Groups and Geometric Analysis, Academic Press, 1984.
[12] L. Hormander, "The analysis of Linear Partial Differential Operator I", Springer-Verlag, 1983.
[13] M. Mursaleen and K. El-Hussein, A Convolution Equation on Heisenberg Group and its Vector Group. Southeast Asian Bulletin of Mathematics 31(2007), 329-332.
[14] W. Rudin, Fourier Analysis on Groups, Interscience Publishers, New York, NY, 1962.
[15] G. Warner, Harmonic Analysis on Semi-Simple Lie Groups, Springerverlag Berlin heidelberg, New york, 1970.

