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Abstract

Let V be the n� dimensional real vectoriel group, K a connected
compact Lie group and G = V o�K be the motion group, which is the
semi-direct product of the group V and K: Let U be the enveloping
algebra ofG, which is the algebra of all the invariant partial di¤erential
equations on G. In this paper, we will de�ne the Fourier transform
on G and we demonsrate the Plancherel theorem. Besides we give
necessary and su¢ cient condition for the existence of a fundemantal
solution for any invariant partial di¤erential equations P on G.
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1 Introduction and Results.

1. Let V be the n� dimensional real vectoriel group, K a compact Lie
group and � : K ! GL(V ) a continuous linear representation from K in V
. Let G = V o� K be the motion group, which is the semi-direct product of
the group V and K: We supply V by K�invariant scalar product which is
denoted by h ; i: Let S(V ) be the Schwartz space of V . We denote by S(G)
the complemented of the space S(V ) 
C1(K) tensor product of S(V ) and
C1(K): The topology of the space S(G) which is de�ned by the family of
semi-normas

@l�;�(f) = sup
j��pj;

sup
(v;y)2V�K

(1 + jvj2)�
Q�vDlf(v; y)


2

(1)

turns S(G) a Frechet space wich can be called the Schwartz space of G, where
j j signi�es the norm associated to (p); see [3]:
De�nition 1.1. Let P be an invariant di¤erential operator on a con-

nected Lie group H. by de�nition P is said to be semi-globally solvable if
there exist a distribution T on H such that PT = �H ; where �H ias the Dirac
measure at the identity element of H:
De�nition 1.2. Let P be an invariant di¤erential operator on a con-

nected Lie group H by de�nition P is said to be globally solvable if for any
function g 2 C1(H); there exist a function f 2 C1(H) such that

Pf = g (2)

For all the following notations and results, see [2]
2. Let k be the Lie algebra of K and (X1; X2; :::::; Xm) a basis of k , such

that the both operators

� =

mX
i=1

X2
i (3)

Dq =
X
0�l�q

 
�

mX
i=1

X2
i

!l
(4)

are left and right invariant (bi-invariant) on K; this basis exist see [2; p:564).
For l 2 N, let Dl = (1��)l, then the family of semi-norms fl, l 2 Ng such
that

l(f) = (

Z
K

��Dlf(y)
��2 dy) 12 ; f 2 C1(K) (5)
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de�ne on C1(K) the same topology of the Frechet topology de�ned by the
semi-norms kX�fk2 de�ned as

kX�fk2 = (
Z
K

jX�f(y)j2 dy) 12 ; f 2 C1(K) (6)

where � = (�1;.....,�m) 2 Nm; see [2; p:565]
3. Let bK be the set of all irreducible unitary representations of K: If

 2 bK, we denote by E the space of representaion  and d its demension
then we get

1 � hDqtr(r); tr(r)i = dq() (7)

If u(�) is a polynomial on Rn valued in E; we denote by eu(�) the matrix
de�ned by

[euij(�)] (8)

where

euij(�) =
0@X
j�j�m

��uij(�)(�)��2
1A 1

2

(9)

� = (�1; �2; :::::; �m); 1 � �j � n; �� = ��1 ::::::��m ; and (�1; �2; ::::; �n) is
basis of Rn: In this case we get.

keu(�)k2 = X
j�j�m

u(�)(�)2 (10)

De�nition 1.3. The Fourier transform of a function f 2 C1(K) is
de�ned as

Tf() =

Z
K

f(x)(x�1)dx (11)

where T denotes the Fourier transform on K
Theorem (A. Cerezo) 1.1. Let f 2 C1(K); then we have the inversion

of the Fourier transform

f(x) =
X
2 bK

dtr[Tf()(x)] (12)
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f(I) =
X

2SO(3)

dtr[Tf()] (13)

and the Plancherel formula

kf(x)k22 =
Z
jf(x)j2 dx =

X
2 bK

d kTf()k2H:S (14)

where I is the identity element of K;where kTf()k2H:S is the norm of the
Hilbert-Schmidt of the operator Tf()

2 Fourier Transform on the Motion Group

De�nition 2.1. For every function f belongs to L1(V �K); one can de�ne
the Fourier transform of f by the following manner

TFf(�; ) =
Z
V

Z
K

f(v; x)e� ih �; vi (x�1)dvdx (15)

for all � 2 V ' V �and for all  2 bK; where F is the partial Fourier transform
on the real vector Lie groupV
Then we get the the Fourier inversion

f(v; x) =
X
2 bK

d

Z
V

tr[TFf(�; )e ih �; vi (x�1)]d� (16)

=

Z
V

X
2 bK

dtr[TFf(�; )e ih �; vi (x�1)]d� (17)

f(0; 1) =
X
2 bK

d

Z
V

tr[TFf(�; )]d� (18)

When K = SO(n);our result is
Theorem 2.1. (Plancheral�s formula) For any f 2 L1(G)\ L2(G);we

get

f �
_
f(0; 1) =

Z
G

jf(v; x)j2 dvdx =
X
2 bK

d

Z
V

kTFf(�; )k22 d� (19)
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where
_
f is the function de�ned by

_
f(v; x) = f(v; x)�1 (20)

Proof:

_
f � f(0; 1)

=
X
2 bK

dtr

Z
V

TF(
_
f � f )(�; )d�

=
X
2 bK

d

Z
V

Z
V

Z
K

tr[
_
f � f(v; x))e� ih �; vi (x�1)]dvdxd�

=
X
2 bK

d

Z
V

Z
V

Z
K

tr[

Z
V

Z
K

f((u; y)�1(v; x))
_
f(u; y)e� ih �; vi (x�1)]dvdxdudyd�

=
X
2 bK

d

Z
V

Z
V

Z
K

tr[

Z
V

Z
K

f((u; y)(v; x))f(u; y)�1e� ih �; vi (x�1)]dvdxdudyd�

=
X
2 bK

d

Z
V

Z
V

Z
K

tr[

Z
V

Z
K

f(u+ yv; yx)f(u; y)e� ih �; vi (x�1)]dvdxdudyd�

Chinging variables u+ yv = w , yx = z; we have

_
f � f(0; 1)

=
X
2 bK

d

Z
V

Z
V

Z
K

tr[

Z
V

Z
K

f(w; z)f(u; y)e� ih �; y�1(w�u)i (z�1y)]dwdzdudyd�

=
X
2 bK

d

Z
V

Z
V

Z
K

tr[

Z
V

Z
K

f(w; z) f(u; y)e� ihy �; (w�u)i (z�1)(y)]dwdzd�

Using the fact that the lebesgue d� is invariant by the group rotation
SO(n); we get
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_
f � f(0; 1)

=
X
2 bK

d

Z
V

Z
V

Z
K

tr[

Z
V

Z
K

f(w; z) f(u; y)e� ihy �; (w�u)i (z�1)(y)]dwdzd�

=
X
2 bK

d

Z
V

Z
V

Z
K

tr[

Z
V

Z
K

f(w; z) f(u; y)e� ih�; (w�u)i (z�1)(y�1)�1]dwdzdudyd�

=
X
2 bK

d

Z
V

Z
V

Z
K

tr[

Z
V

Z
K

f(w; z)e� ih�; wi f(u; y)e� ih�; �ui (z�1)�(y�1)]dwdzdudyd�

=
X
2 bK

d

Z
V

Z
V

Z
K

Z
V

Z
K

tr[f(w; z)e� ih�; wi(z�1) f(u; y)e� ih�; ui �(y�1)]dwdzdudyd�

=
X
2 bK

d

Z
V

tr[TFf(�; ) TFf(�; �)]d� =
X
2 bK

d

Z
V

kTFf(�; )k2H:S d�

Hence our theorem
Let L = V �K �K be the group with law:

(v; x; y)(w; s; t) = (v + �(y)w; xs; yt) (21)

Let D(V �K �K ); S(V �K �K), and C1(V �K �K) be C1 with
compact support, the Schwartz space and the space of C1- functions of the
group L:
De�nition 2.2.. For any f 2 S(G); we can de�ne a function ef 2

S(V �K �K) as follows

ef(v; x; y) = f(�(xv); xy) = f(xv:xy) (22)

for all � 2 V ' V �and for all  2 bK;where xv signi�es �(xv): Note here
that the function ef is invariant in the following senseef(tv; xt�1; ty) = ef(v; x; y) (23)

We denote by DK(V �K�K ); SK(V �K�K), and C1K (V �K�K) the
spaces C1 with compact, the Schwartz space and the space of C1- functions
of the group L, which are invariant in sense (21)
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De�nition 2.3.. for any two function f 2 S(G) and F 2 SK(V �K�K),
we can de�ne a convolution product of f and F on G as

f � F (v; x; y) =

Z
G

F ((w; z)�1(v; x; y)f(w; z)dwdz

=

Z
G

F (z�1(v � w); x; z�1y)f(w; z)dwdz (24)

This leads to obtain
Lemma 2.1. If F is invarant in sense (21), then we get

f � F (v; x; y) = f �c F (v; x; y) (25)

for every f 2 C1(V � K); (v; x; y) 2 L, where � signi�es the convolution
product on G = V �fIKg�K with respect the variables (v; y) and �csigni�es
the convolution product on the subgroup B = V � K � fIKg of L;which is
the direct product of V and K with respect the variables (v; x)
Proof: Let f 2 S(G) and F 2 SK(V �K �K); then we have

f � F (v; x; y) =

Z
G

F ((w; z)�1(v; x; y)f(w; z)dwdz

=

Z
G

F (z�1(v � w); x; z�1y)f(w; z)dwdz

=

Z
G

F ((v � w); xz�1; y)f(w; z)dwdz

= F �c f(v; x; y) (26)

So the lemma is proved.

De�nition 2.4. If f 2 S(G); one can de�ne the Fourier transform of
its invariant ef as
TF ef(�; ; 1) = Z

V

Z
K

X
�2 bK

d�tr[

Z
K

TF ef(v; x; y)�(y�1)dy](x�1)dxe� ih �; vidv

(27)
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where ef is the function de�ned by
ef(v; x; y) = f(xv; xy) (28)

Theorem 2.2. For any two functions g and f belong to C1(V �K) =
C1(G) , then we have

TF(g � ef)(�; ; 1) = TF( ef �c g)(�; ; 1) = F( ef)(�; ; 1)TF(g)(�; ) (29)

Proof: By lemma 2.1. we have if f and g two functions from S(G)

TF(g � ef)(�; ; 1)
=

Z
V

Z
K

X
�2 bK

d�tr[(g � ef)(v; x; �)](x�1)dxe� ih �; vidv

=

Z
V

Z
K

X
�2 bK

d�tr[

Z
K

((g � ef)(v; x; y))�(y�1)dy](x�1)dxe� ih �; vidv

=

Z
V

Z
K

X
�2 bK

d�tr[

Z
K

(( ef �c g)(v; x; y))�(y�1)dy](x�1)dxe� ih �; vidv(30)

Changing variables v � u = w; xt�1 = z; this implies

TF(g � ef)(�; ; 1)
=

Z
V

Z
K

Z
V

Z
K

ef(v � u; xt�1; 1)]g(u; t)dudt(x�1)dxe� ih �; vidv

=

Z
V

Z
K

Z
V

Z
K

ef(w; z; 1)]g(u; t)(t�1z�1)dxe� ih �; w+uidudtdwdzvdx

=

Z
V

Z
K

Z
V

Z
K

ef(w; z; 1)]g(u; t)(z�1)(t�1)dzdte� ih �; wie� ih �; uidudw

=

Z
V

Z
K

Z
V

Z
K

ef(zw; z)]g(u; t)(z�1)(t�1)dzdte� ih �; wie� ih �; uidudw(31)

= TF ef(�; ; 1)TFg(�; ) (32)

8
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Theorem 2.3. (Plancheral�s formula) For any f 2 L1(G)\ L2(G);we
get

f �
e_
f(0; 1) =

Z
G

jf(v; x)j2 dvdx =
X
2 bK

d

Z
V

kTFf(�; )k22 d� (33)

where e_
f(v; x; y) = f((xv; xy)�1) (34)

The proof of this theorem results immediatly from 2.2

3 Fourier Transform and Di¤erential Opera-

tors on the Motion Groups

3. We denote by L1(G) the Banach algebra that consists of all complex
valued functions on the group G, which are integrable with respect to the
Haar measure of G and multiplication is de�ned by convolution on G , and
we denote by L2(G) the Hilbert space of G. So we have for any f 2 L1(G)
and � 2 L1(G)

� � f(v; x) =
Z
G

f((w; y)�1(v; x))�(w; y)dwdy (35)

where dwdy is the Haar measure on G , and � denotes the convolution
product on G: Let U be the complexi�ed universal enveloping algebra of the
real Lie algebra of G; which is canonically isomorphic onto the algebra of all
distributions on G supported by fIGg; where fIGg is the identity element of
G: For any u 2 U one can de�ne an left invariant di¤erential operator P on
G as follows:

Puf(X) = u � f(v; x) =
Z
G

f((w; y)�1(v; x))u(w; y)dwdy (36)

for any f 2 C1(G): The mapping u ! Pu is an algebra isomorphism of U
onto the algebra of all invariant di¤erential operators on G:
where �c means the convolution product on the group A; and dwdy is the

Haare measure on A:We denote by UB the complexi�ed universal enveloping

9
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algebra of the real Lie algebra of B;which is canonically isomorphic onto the
algebra of all distributions on B supported by the fIBg; where fIBg is the
identity element of A: For any u 2 U one can de�ne a di¤erential operator
with constant coe¢ cients Q on B as

f �c Qu(v; x) = f �c u(v; x) =
Z
B

f(v � w; xy�1)u(w; y)dwdy (37)

for any f 2 C1(A); where �c means the convolution product on the group
B:The mapping u ! Qu is an algebra isomorphism of UB onto the algebra
of all invariant di¤erential operators on B: For more details see [4; 11]:
Theorem 3.1. Let P be a right invariant di¤erential on the motion group

G, then P has a fundamental solution if and only if there is a constant C
and a number q 2 N , such that

det TFu(0; ) 6= 0; and
 coTFu(0; e)
det TFu(0; e)

 � d(q) (38)

Proof: Let u be the distribution associted to the right invariant di¤erential
operator P: Let End(E) be the space of all enomorphisms of E and let P�
be the polynomial valued in End(E); de�ned by

(�; ) 7! TF(_u)((�; ) + (�; )) = TF(_u)(� + �; ) (39)

For any f 2 D(G), we put

hS; fi

=

Z
V

Z



X
2 bK

dtr[
coTF(_u)(� + �; )
det TF(_u)(� + �; )

TF(f)(� + �; )]�(P� ; �)d�d�d!d�d�d�(40)

where 
 is a ball in Cn with center 0; � is Hormander,s function[12]: Then by
[2; 573�579 ]; S de�nes distribution onG; so we can de�ne a new distributioneS assiciated to S as

10
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heS; f i
= hS; ef i
=

Z
V

Z



X
2 bK

dtr[
coTF(_u)(� + �; )
det TF(_u)(� + �; )

TF( ef)(� + �; ; I)]�(P� ; �)d�d�
where �(P� ; �) is the Hormander function [12]: Then we have by [2; 573�579
] and by Hormander construction , we have

h]u � S; f i
= hu � S; ef i = hS; _u � ef i
=

Z
V

Z



X
2\SO(3)

dtr[
coTF(_u)(� + �; )
det TF(_u)(� + �; )

TF(_u � ef)(� + �; ; I))]�(P� ; �)d�d�
=

Z
V

Z



X
2 bK

dtr[
coTF(_u)(� + �; )
det TF(_u)(� + �; )

TF(_u �c ef)(� + �; ; I)]�(P� ; �)d�d�
=

Z
V

Z



X
2 bK

dtr[
coTF(_u)(� + �; )F(_u)(� + �; )

det TF(_u)(� + �; )
TF( ef)(� + �; ; I)]�(P� ; �)d�d�

=

Z
V

Z



X
2 bK

dtr[TF( ef)(� + �; ; I)]�(P� ; �)d�d�
=

Z
V

X
2 bK

dtr[TF( ef)(�; ; I)]d� = ef(0; I; I) = h�G; efi (41)

Consequently, we have

u � S(v; q) = �G(v; q) (42)

Hence the proof of our theorem.
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